Assignment Polar Graphs

Name _____

Objective: You will graph several types of polar graphs, and explore to see how parameter changes alter the graphs.

Use your calculator:

Change the mode to radians and polar (from function)

Assignment Details:

- For each type of graph, graph all equations on the same grid.
- Use θ (same button as *x*)
- You may need to zoom out to be able to see complete graphs.
- Answer the questions about how changes in *a*, *b*, or *n* affect the graph.

Circle Analysis

1. In the equation $y = a + b \cos(n\theta)$, what is the value of *a* for each of the equations in *Circle Exploration* questions? What is the value of *n*?

a = _____ *n* = _____

- 2. What effect does the absolute value of *b* have on the graph of the circle?
- 3. What effect does the positive or negative value of *b* have on the graph?

Rose Curves Exploration Graph the following equations on the same grid.	6 ⁴ y 5- 4-
1. $r_1(\theta) = 4 \cos(\theta)$ 2. $r_2(\theta) = 4 \cos(2\theta)$ 3. $r_3(\theta) = 4 \cos(3\theta)$ 4. $r_4(\theta) = 4 \cos(4\theta)$	$\begin{array}{c} 3-\\ 2-\\ 1-\\ \hline -6 & -5 & -4 & -3 & -2 & -1\\ \hline -1-\\ \hline 1 & 2 & 3 & 4 & 5 & 6 \end{array}$
	-2- -3- -4- -5- -6-

Graph the following equations on the same grid.	6 ⁺ ^y
	5-
1. $r_1(\theta) = 4 \cos(3\theta)$	4-
2. $r_2(\theta) = 5 \cos(3\theta)$	37
3. $r_3(\theta) = 6 \cos(3\theta)$	1+
	-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 -1
	-2-
	-3-
	-4-
	-5-
	-01
	c† v
Rose Curves Exploration (continued)	5
Graph the following equations on the same grid	5

Graph the following equations on the same grid.	5- 4-
1. $r_1(\theta) = 5 \cos(3\theta)$	3- 2-
2. $r_2(\theta) = -5 \cos(3\theta)$	1-
	-6 -5 -4 -3 -2 -1 1 2 3 4 5 6
	-2-
	-3-
	-4+
	-51 -61

Rose Curve Analysis

4. In the equation $y = a + b cos(n\theta)$, what is the value of *a* for each of the equations in the *Rose Exploration*? What is the value of *b* in the <u>first</u> section of graphs?

a = _____ *b* = _____

5. How many rose leaves does each equation produce?

A.	$r_1(\theta) = 4 \cos(\theta)$	leaves =
B.	$r_2(\theta) = 4 \cos(2\theta)$	leaves =
C.	$r_3(\theta) = 4\cos(3\theta)$	leaves =
D.	$r_4(\theta) = 4 \cos(4\theta)$	leaves =

E. Predict the number of leaves for $r(\theta) = 4 \cos(5\theta)$: _____ (check, if necessary)

- 6. How does the value of *n* determine the number of leaves?
- 7. What effect does the value of *b* have on the leaves of the rose?
- 8. What effect does the positive or negative value of *b* have on the graph?

Limaçon Curves Exploration Graph the following equations on the same grid.	6 ⁴ y 5- 4- 3-
1. $r_1(\theta) = 1 + 2 \cos(\theta)$ 2. $r_2(\theta) = 2 + 4 \cos(\theta)$	2- 1-
3. $r_3(\theta) = 1 - 3 \cos(\theta)$ 4. $r_4(\theta) = 2 - 5 \cos(\theta)$	-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 -1+ -2+
	-3- -4-
	-5- -6-

Limaçon Curve Analysis

9. In the equation $y = a + b \cos(n\theta)$, what is the value of *n* for each of the equations in *Limaçon Curve Exploration*?

n = _____

- 10. How does the absolute value of a compare to the absolute value of b?
- 11. How do the absolute values of *a* and *b* affect the graph?
- 12. What effect does the positive or negative value of *b* have on the graph?

		•
Cardioid Exploration		y
Graph the following equations on the same grid		-
Graph the following equations on the same grid.		-
		-
$1 r_1(\theta) = 2 + 2 cos(\theta)$	-	-
1. $\Pi(0) = 2 + 2 \cos(0)$		
2. $r_2(\theta) = 3 + 3 \cos(\theta)$		-
$2 - r^2(0) = 4 + 4 \cos(0)$		- ,
$3. 13(\theta) - 4 + 4 \cos(\theta)$		
4 $r_4(\theta) = 5 + 5 \cos(\theta)$		-
1. 14(0) 0 0 0 000 (0)	-	†
• highlight $r(\theta) = 3 + 3 \cos(\theta)$		
		-
• Now graph $r_5(\theta) = 3 - 3 \cos(\theta)$		-
		-
		+

Cardiod Curve Analysis

13. In the equation $y = a + b \cos(n\theta)$, what is the value of *n* for each of the equations in *Cardiod Curve Exploration*?

n = _____

- 14. How does the absolute value of a compare to the absolute value of b?
- 15. How do the absolute values of *a* and *b* affect the graph?
- 16. What effect does the positive or negative value of *b* have on the graph?

Summary

Consider the function $r(\theta) = a + b \sin(n\theta)$. Describe the graph produced and indicate whether the graph is a circle, rose, limaçon or cardiod. (Can you determine the shape without graphing? If necessary, use the calculator to help with the graphs.)

17.	a = 0, b = 2, n = 1	
18.	a = 0, b = 4, n = 1	
19.	a = 0, b = -6, n = 1	
20.	a = 0, b = 2, n = 2	
21.	a = 0, b = 2, n = 3	
22.	a = 0, b = -3, n = 4	
23.	a = 1, b = 2, n = 1	
24.	a = 2, b = 2, n = 1	
25.	a = 3, b = -4, n = 1	
26.	a = 2, b = -5, n = 1	

27. How do the curves $r(\theta) = a + b \cos(n\theta)$ and $r(\theta) = a + b \sin(n\theta)$ compare?

28. Generalize how the values of *a*, *b*, and *n* produce the different curves.