Name \qquad

Polar Graphs

Objective: You will graph several types of polar graphs, and explore to see how parameter changes alter the graphs.

Use your calculator:
Change the mode to radians and polar (from function)

Assignment Details:

- For each type of graph, graph all equations on the same grid.
- Use θ (same button as x)
- You may need to zoom out to be able to see complete graphs.
- Answer the questions about how changes in a, b, or n affect the graph.

Circle Exploration

Graph the following equations on the same grid.

1. $\mathrm{r}_{1}(\theta)=2 \cos (\theta)$
2. $r_{2}(\theta)=3 \cos (\theta)$
3. $\mathrm{r} 3(\theta)=-4 \cos (\theta)$
4. $\mathrm{r} 4(\theta)=-5 \cos (\theta)$

Circle Analysis

1. In the equation $y=a+b \cos (n \theta)$, what is the value of a for each of the equations in Circle Exploration questions? What is the value of n ?
$a=$ \qquad

$$
n=
$$

\qquad
2. What effect does the absolute value of b have on the graph of the circle?
3. What effect does the positive or negative value of b have on the graph?

Rose Curves Exploration

Graph the following equations on the same grid.

1. $\mathrm{r}_{1}(\theta)=4 \cos (\theta)$
2. $r_{2}(\theta)=4 \cos (2 \theta)$
3. $\mathrm{r} 3(\theta)=4 \cos (3 \theta)$
4. $\mathrm{r} 4(\theta)=4 \cos (4 \theta)$

Graph the following equations on the same grid.

1. $\mathrm{r}_{1}(\theta)=4 \cos (3 \theta)$
2. $r_{2}(\theta)=5 \cos (3 \theta)$
3. $r_{3}(\theta)=6 \cos (3 \theta)$

Rose Curves Exploration (continued)

Graph the following equations on the same grid.

1. $\mathrm{r} 1(\theta)=5 \cos (3 \theta)$
2. $\mathrm{r}_{2}(\theta)=-5 \cos (3 \theta)$

Rose Curve Analysis

4. In the equation $y=a+b \cos (n \theta)$, what is the value of a for each of the equations in the Rose Exploration? What is the value of b in the first section of graphs?
$a=$ \qquad $b=$ \qquad
5. How many rose leaves does each equation produce?

A.	$\mathrm{r} 1(\theta)=4 \cos (\theta)$	leaves $=$
B.	$\mathrm{r} 2(\theta)=4 \cos (2 \theta)$	leaves $=$
C.	$\mathrm{r} 3(\theta)=4 \cos (3 \theta)$	leaves $=$
D.	$\mathrm{r} 4(\theta)=4 \cos (4 \theta)$	leaves $=$

E. Predict the number of leaves for $r(\theta)=4 \cos (5 \theta)$: \qquad (check, if necessary)
6. How does the value of n determine the number of leaves?
7. What effect does the value of b have on the leaves of the rose?
8. What effect does the positive or negative value of b have on the graph?

Limaçon Curves Exploration

Graph the following equations on the same grid.

1. $\mathrm{r}(\theta)=1+2 \cos (\theta)$
2. $r_{2}(\theta)=2+4 \cos (\theta)$
3. $\mathrm{r} 3(\theta)=1-3 \cos (\theta)$
4. $\mathrm{r} 4(\theta)=2-5 \cos (\theta)$

Limaçon Curve Analysis

9. In the equation $y=a+b \cos (n \theta)$, what is the value of n for each of the equations in Limaçon Curve Exploration? $n=$ \qquad
10. How does the absolute value of a compare to the absolute value of b ?
11. How do the absolute values of a and b affect the graph?
12. What effect does the positive or negative value of b have on the graph?

Cardioid Exploration

Graph the following equations on the same grid.

1. $\mathrm{r}(\theta)=2+2 \cos (\theta)$
2. $r_{2}(\theta)=3+3 \cos (\theta)$
3. $\mathrm{r} 3(\theta)=4+4 \cos (\theta)$
4. $r 4(\theta)=5+5 \cos (\theta)$

- highlight $r(\theta)=3+3 \cos (\theta)$
- Now graph $\mathrm{r} 5(\theta)=3-3 \cos (\theta)$

Cardiod Curve Analysis

13. In the equation $y=a+b \cos (n \theta)$, what is the value of n for each of the equations in Cardiod Curve Exploration?

$$
n=
$$

\qquad
14. How does the absolute value of a compare to the absolute value of b ?
15. How do the absolute values of a and b affect the graph?
16. What effect does the positive or negative value of b have on the graph?

Summary

Consider the function $\mathrm{r}(\theta):=a+b \sin (n \theta)$. Describe the graph produced and indicate whether the graph is a circle, rose, limaçon or cardiod. (Can you determine the shape without graphing? If necessary, use the calculator to help with the graphs.)

17.	$a=0, b=2, n=1$	
18.	$a=0, b=4, n=1$	
19.	$a=0, b=-6, n=1$	
20.	$a=0, b=2, n=2$	
21.	$a=0, b=2, n=3$	
22.	$a=0, b=-3, n=4$	
23.	$a=1, b=2, n=1$	
24.	$a=2, b=2, n=1$	
25.	$a=3, b=-4, n=1$	
26.	$a=2, b=-5, n=1$	

27. How do the curves $r(\theta)=a+b \cos (\mathrm{n} \theta)$ and $r(\theta)=a+b \sin (\mathrm{n} \theta)$ compare?
28. Generalize how the values of a, b, and n produce the different curves.
