Practice Test - Chapter 5

Find the value of each expression using the given information.

1. $\sin \theta$ and $\cos \theta, \csc \theta=-4, \cos \theta<0$

SOLUTION:
Use the reciprocal identity $\sin \theta=\frac{1}{\csc \theta}$ to find \sin θ.

$$
\begin{aligned}
\sin \theta & =\frac{1}{\csc \theta} \\
& =-\frac{1}{4}
\end{aligned}
$$

Use the Pythagorean Identity that involves $\sin \theta$ to find $\cos \theta$.

$$
\begin{gathered}
\sin ^{2} \theta+\cos ^{2} \theta=1 \\
\left(-\frac{1}{4}\right)^{2}+\cos ^{2} \theta=1
\end{gathered}
$$

$$
\frac{1}{16}+\cos ^{2} \theta=1
$$

$$
\cos ^{2} \theta=1-\frac{1}{16}
$$

$$
\cos ^{2} \theta=\frac{15}{16}
$$

$$
\cos \theta= \pm \sqrt{\frac{15}{16}}
$$

$$
\cos \theta= \pm \frac{\sqrt{15}}{4}
$$

Since $\cos \theta<0, \cos \theta=-\frac{\sqrt{15}}{4}$.
2. $\csc \theta$ and $\sec \theta, \tan \theta=\frac{2}{5}, \csc \theta<0$

SOLUTION:

Use the Pythagorean Identity that involves $\tan \theta$ to find $\sec \theta$.

$$
\begin{aligned}
\tan ^{2} \theta+1 & =\sec ^{2} \theta \\
\left(\frac{2}{5}\right)^{2}+1 & =\sec ^{2} \theta \\
\frac{4}{25}+1 & =\sec ^{2} \theta \\
\frac{29}{25} & =\sec ^{2} \theta \\
\pm \sqrt{\frac{29}{25}} & =\sec \theta \\
\pm \frac{\sqrt{29}}{5} & =\sec \theta
\end{aligned}
$$

Since $\csc \theta<0, \sin \theta$ is negative. Since $\tan \theta=$ $\frac{\sin \theta}{\cos \theta}$ is positive and $\sin \theta$ is negative, $\cos \theta$ is negative. Since $\cos \theta$ is negative, $\sec \theta$ must be negative. So, $-\frac{\sqrt{29}}{5}=\sec \theta$.
Use the reciprocal identity $\cos \theta=\frac{1}{\sec \theta}$ to find $\cos \theta$.

$$
\begin{aligned}
\cos \theta & =\frac{1}{\sec \theta} \\
& =\frac{1}{-\frac{\sqrt{29}}{5}} \\
& =-\frac{5}{\sqrt{29}} \\
& =-\frac{5 \sqrt{29}}{29}
\end{aligned}
$$

Use the Pythagorean Identity that involves $\cos \theta$ to find $\sin \theta$.

Practice Test - Chapter 5

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta & =1 \\
\sin ^{2} \theta+\left(-\frac{5 \sqrt{29}}{29}\right)^{2} & =1 \\
\sin ^{2} \theta+\frac{25}{29} & =1 \\
\sin ^{2} \theta & =1-\frac{25}{29} \\
\sin ^{2} \theta & =\frac{4}{29} \\
\sin \theta & = \pm \sqrt{\frac{4}{29}} \\
\sin \theta & = \pm \frac{2}{\sqrt{29}} \\
\sin \theta & = \pm \frac{2 \sqrt{29}}{29}
\end{aligned}
$$

Since $\sin \theta$ is negative, $\sin \theta=-\frac{2 \sqrt{29}}{29}$. Use the reciprocal identity $\csc \theta=\frac{1}{\sin \theta}$ to find $\csc \theta$.
$\csc \theta=\frac{1}{\sin \theta}$

$$
=\frac{1}{\left(-\frac{2 \sqrt{29}}{29}\right)}
$$

$$
=-\frac{29}{2 \sqrt{29}}
$$

$$
=-\frac{\sqrt{29}}{2}
$$

Simplify each expression.

3. $\frac{\sin \left(90^{\circ}-x\right)}{\tan \left(90^{\circ}-x\right)}$

$$
\begin{aligned}
& \text { SOLUTION: } \\
& \begin{aligned}
\frac{\sin (90-x)}{\tan (90-x)} & =\frac{\cos x}{\cot x} \\
& =\frac{\cos x}{\frac{\cos x}{\sin x}} \\
& =\cos x \cdot \frac{\sin x}{\cos x} \\
& =\sin x
\end{aligned}
\end{aligned}
$$

4. $\frac{\sec ^{2} x-1}{\tan ^{2} x+1}$

SOLUTION:

$$
\begin{aligned}
\frac{\sec ^{2} x-1}{\tan ^{2} x+1} & =\frac{\tan ^{2} x}{\sec ^{2} x} \\
& =\frac{\frac{\sin ^{2} x}{\cos ^{2} x}}{\cos ^{2} x} \\
& =\frac{\sin ^{2} x}{\cos ^{2} x} \cdot \cos ^{2} x \\
& =\sin ^{2} x
\end{aligned}
$$

5. $\sin \theta\left(1+\cot ^{2} \theta\right)$

SOLUTION:

$$
\begin{aligned}
\sin \theta\left(1+\cot ^{2} \theta\right) & =\sin \theta \csc ^{2} \theta \\
& =\sin \theta \frac{1}{\sin ^{2} \theta} \\
& =\frac{1}{\sin \theta} \\
& =\csc \theta
\end{aligned}
$$

Verify each identity.

6. $\frac{\csc ^{2} \theta-1}{\csc ^{2} \theta}+\frac{\sec ^{2} \theta-1}{\sec ^{2} \theta}=1$

SOLUTION:
$\frac{\csc ^{2} \theta-1}{\csc ^{2} \theta}+\frac{\sec ^{2} \theta-1}{\sec ^{2} \theta}$
$=\frac{\cot ^{2} \theta}{\csc ^{2} \theta}+\frac{\tan ^{2} \theta}{\sec ^{2} \theta} \quad$ Pythagorean Identities
$=\frac{\cot ^{2} \theta}{\frac{1}{\sin ^{2} \theta}}+\frac{\frac{\tan ^{2} \theta}{\frac{1}{\cos ^{2} \theta}} \quad \text { Reciprocal Identities }}{}$
$=\frac{\cos ^{2} \theta}{\sin ^{2} \theta} \cdot \sin ^{2} \theta+\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \cdot \cos ^{2} \theta$ Use Quotient Identities $\begin{aligned} & \text { and multiply by the reciprocals. }\end{aligned}$
$=\cos ^{2} \theta+\sin ^{2} \theta \quad$ Simplify
$=1 \quad$ PythagoreanIdentity

Practice Test - Chapter 5

7. $\frac{\cos \theta}{1+\sin \theta}+\frac{1-\sin \theta}{\cos \theta}=\frac{2 \cos \theta}{1+\sin \theta}$

SOLUTION:
$\frac{\cos \theta}{1+\sin \theta}+\frac{1-\sin \theta}{\cos \theta}$
$=\frac{\cos \theta}{1+\sin \theta} \cdot \frac{\cos \theta}{\cos \theta}+\frac{1-\sin \theta}{\cos \theta} \cdot \frac{1+\sin \theta}{1+\sin \theta}$ Comm on denominator
$=\frac{\cos ^{2} \theta}{\cos \theta(1+\sin \theta)}+\frac{1-\sin ^{2} \theta}{\cos \theta(1+\sin \theta)} \quad$ Simplify .
$=\frac{\cos ^{2} \theta}{\cos \theta(1+\sin \theta)}+\frac{\cos ^{2} \theta}{\cos \theta(1+\sin \theta)}$
$=\frac{2 \cos ^{2} \theta}{\cos \theta(1+\sin \theta)}$
$=\frac{2 \cos \theta}{1+\sin \theta}$
Pythagorean Identity

Add.
Divide numerator and denominator by $\cos \theta$
8. $\frac{1}{1+\cos \theta}+\frac{1}{1-\cos \theta}=2 \csc ^{2} \theta$

SOLUTION:

$$
\begin{array}{ll}
\frac{1}{1+\cos \theta}+\frac{1}{1-\cos \theta} \\
=\frac{1}{1+\cos \theta} \cdot \frac{1-\cos \theta}{1-\cos \theta}+\frac{1}{1-\cos \theta} \cdot \frac{1+\cos \theta}{1+\cos \theta} & \text { Common denominator } \\
=\frac{1-\cos \theta}{1-\cos ^{2} \theta}+\frac{1+\cos \theta}{1-\cos ^{2} \theta} & \text { Simplify. } \\
=\frac{2}{\sin ^{2} \theta} & \text { Use the Pythagore an } \\
=2 \csc ^{2} \theta & \text { Identity and add. } \\
\text { Reciprocal Identity }
\end{array}
$$

9. $-\sec ^{2} \theta \sin ^{2} \theta=\frac{\cos ^{2} \theta-1}{\cos ^{2} \theta}$

SOLUTION:

$$
\begin{array}{ll}
-\sec ^{2} \theta \sin ^{2} \theta & \\
=\sec ^{2} \theta\left(-\sin ^{2} \theta\right) & \text { Commutative Property } \\
=\frac{1}{\cos ^{2} \theta}\left(-\sin ^{2} \theta\right) & \\
\text { Reciprocal Identity } \\
=\frac{-\sin ^{2} \theta}{\cos ^{2} \theta} & \text { Multiply. } \\
=\frac{-\left(1-\cos ^{2} \theta\right)}{\cos ^{2} \theta} & \text { Pythagorean Identity } \\
=\frac{\cos ^{2} \theta-1}{\cos ^{2} \theta} & \text { Simplify. }
\end{array}
$$

10. $\sin ^{4} x-\cos ^{4} x=2 \sin ^{2} x-1$

SOLUTION:

$$
\begin{array}{ll}
\sin ^{4} x-\cos ^{4} x & \\
=\left(\sin ^{2} x-\cos ^{2} x\right)\left(\sin ^{2} x+\cos ^{2} x\right) & \\
=\left(\sin ^{2} x-\cos ^{2} x\right) \cdot 1 & \text { Pactor. } \\
=\left[\sin ^{2} x-\left(1-\sin ^{2} x\right)\right] & \\
=\sin ^{2} x-1+\sin ^{2} x & \\
=2 \sin ^{2} x-1 & \\
\text { Pythagorean Identity } \\
\text { Add like Iike terms. }
\end{array}
$$

11. MULTIPLE CHOICE Which expression is not true?
A $\tan (-\theta)=-\tan \theta$
B $\tan (-\theta)=\frac{1}{\cot (-\theta)}$
$\mathbf{C} \tan (-\theta)=\frac{\sin (-\theta)}{\cos (-\theta)}$
D $\tan (-\theta)+1=\sec (-\theta)$

SOLUTION:

Choice A is true due to the Odd-Even Identity.
Choice B is true due to the Reciprocal Identity.
Choice C is true due to the Quotient Identity. Verify
Choice D using the quotient and reciprocal identities.

$$
\begin{array}{r}
\tan (-\theta)+1=\sec (-\theta) \\
\frac{\sin (-\theta)}{\cos (-\theta)}+1=\frac{1}{\cos (-\theta)} \\
\frac{\sin (-\theta)}{\cos (-\theta)}+\frac{\cos (-\theta)}{\cos (-\theta)}=\frac{1}{\cos (-\theta)} \\
\frac{\sin (-\theta)+\cos (-\theta)}{\cos (-\theta)} \neq \frac{1}{\cos (-\theta)}
\end{array}
$$

Choice D is not true.
The correct answer is D.
Find all solutions of each equation on the interval $[0,2 \pi]$.
12. $\sqrt{2} \sin \theta+1=0$

SOLUTION:

$$
\begin{aligned}
\sqrt{2} \sin \theta+1 & =0 \\
\sqrt{2} \sin \theta & =-1 \\
\sin \theta & =-\frac{1}{\sqrt{2}} \\
\sin \theta & =-\frac{\sqrt{2}}{2}
\end{aligned}
$$

On the interval $[0,2 \pi), \sin \theta=-\frac{\sqrt{2}}{2}$ when $\theta=$ $\frac{5 \pi}{4}$ and $\theta=\frac{7 \pi}{4}$.

Practice Test - Chapter 5

13. $\sec ^{2} \theta=\frac{4}{3}$

SOLUTION:
$\sec ^{2} \theta=\frac{4}{3}$
$\sec \theta= \pm \sqrt{\frac{4}{3}}$
$\sec \theta= \pm \frac{2}{\sqrt{3}}$
$\sec \theta= \pm \frac{2 \sqrt{3}}{3}$
On the interval $[0,2 \pi), \sec \theta=\frac{2 \sqrt{3}}{3}$ when $\theta=$
$\frac{\pi}{6}$ and $\theta=\frac{11 \pi}{6}$ and $\sec \theta=-\frac{2 \sqrt{3}}{3}$ when $\theta=$ $\frac{5 \pi}{6}$ and $\theta=\frac{7 \pi}{6}$.

Solve each equation for all values of θ.

14. $\tan ^{2} \theta-\tan \theta=0$

SOLUTION:

$$
\begin{aligned}
\tan ^{2} \theta-\tan \theta & =0 \\
\tan \theta(\tan \theta-1) & =0
\end{aligned}
$$

$\tan \theta=0$
$\tan \theta-1=0$

$$
\tan \theta=1
$$

The period of tangent is π, so you only need to find solutions on the interval $[0, \pi)$. The solution to $\tan \theta$ $=0$ on this interval is 0 and the solution to $\tan \theta=1$ on this interval is $\frac{\pi}{4}$.

Solutions on the interval ($-\infty, \infty$), are found by adding integer multiples of π. Therefore, the general form of the solutions is $n \pi, \frac{\pi}{4}+n \pi$, where n is an integer.
15. $\frac{1-\sin \theta}{\cos \theta}=\cos \theta$

SOLUTION:

$$
\begin{aligned}
\frac{1-\sin \theta}{\cos \theta} & =\cos \theta \\
1-\sin \theta & =\cos ^{2} \theta \\
1-\sin \theta & =1-\sin ^{2} \theta \\
\sin ^{2} \theta-\sin \theta & =0 \\
\sin \theta(\sin \theta-1) & =0
\end{aligned}
$$

$\sin \theta=0$
$\sin \theta-1=0$

$$
\sin \theta=1
$$

The period of sine is 2π, so you only need to find solutions on the interval $[0,2 \pi)$. The solutions to \sin $\theta=0$ on this interval are 0 and π and the solution to $\sin \theta=1$ on this interval is $\frac{\pi}{2}$. However, since \cos $\frac{\pi}{2}=0$, the equation is undefined for $\theta=\frac{\pi}{2}$.

Solutions on the interval ($-\infty, \infty$), are found by adding integer multiples of 2π. The solutions $\theta=0+$ $2 n \pi$ and $\theta=\pi+2 n \pi$ can be combined to $\theta=n \pi$. Therefore, the general form of the solutions is $n \pi$, where n is an integer.

Practice Test - Chapter 5

16. $\frac{1}{\sec \theta-1}-\frac{1}{\sec \theta+1}=2$

SOLUTION:

$$
\begin{aligned}
\frac{1}{\sec \theta-1}-\frac{1}{\sec \theta+1} & =2 \\
\frac{\sec \theta+1}{\sec ^{2} \theta-1}-\frac{\sec \theta-1}{\sec ^{2} \theta-1} & =2 \\
\frac{2}{\sec ^{2} \theta-1} & =2 \\
\frac{2}{\tan ^{2} \theta} & =2 \\
2 & =2 \tan ^{2} \theta \\
1 & =\tan ^{2} \theta \\
\pm 1 & =\tan \theta
\end{aligned}
$$

The period of tangent is π, so you only need to find solutions on the interval $[0, \pi)$. The solution to tan $\theta=1$ on this interval is $\frac{\pi}{4}$ and the solution to tan $\theta=-1$ on this interval is $\frac{3 \pi}{4}$.

Solutions on the interval ($-\infty, \infty$), are found by adding integer multiples of π. The solutions $\frac{\pi}{4}+n \pi$ and $\frac{3 \pi}{4}+n \pi$ can be combined to $\frac{\pi}{4}+\frac{\pi}{2} n$.
Therefore, the general form of the solutions is $\frac{\pi}{4}+$ $\frac{\pi}{2} n$, where n is an integer.
17. $\sec \theta-2 \tan \theta=0$

SOLUTION:

$$
\begin{gathered}
\sec \theta-2 \tan \theta=0 \\
\frac{1}{\cos \theta}-\frac{2 \sin \theta}{\cos \theta}=0 \\
\frac{1-2 \sin \theta}{\cos \theta}=0 \\
1-2 \sin \theta=0 \\
-2 \sin \theta=-1 \\
\sin \theta=\frac{1}{2}
\end{gathered}
$$

The period of sine is 2π, so you only need to find solutions on the interval $[0,2 \pi)$. The solutions to \sin $\theta=\frac{1}{2}$ on this interval are $\frac{\pi}{6}$ and $\frac{5 \pi}{6}$. The equation is undefined when $\cos \theta=0$, so these values of θ are not part of the solution.

Solutions on the interval $(-\infty, \infty)$, are found by adding integer multiples of 2π. Therefore, the general form of the solutions is $\frac{\pi}{6}+2 n \pi, \frac{5 \pi}{6}+2 n \pi$, where n is an integer.
18. CURRENT The current produced by an alternator is given by $I=40 \sin 135 \pi t$, where I is the current in amperes and t is the time in seconds. At what time t does the current first reach 20 amperes? Round to the nearest ten-thousandths.

SOLUTION:

Substitute $I=20$ into $I=40 \sin 135 \pi t$ and solve for t.

$$
\begin{aligned}
I & =40 \sin 135 \pi t \\
20 & =40 \sin 135 \pi t \\
\frac{1}{2} & =\sin 135 \pi t \\
\sin ^{-1} \frac{1}{2} & =135 \pi t \\
\frac{\pi}{6} & =135 \pi t \\
\frac{1}{810} & =t \\
0.0012 & \approx t
\end{aligned}
$$

The time at which the current first reaches 20 amperes is about 0.0012 second.

Practice Test - Chapter 5

Find the exact value of each trigonometric expression.

19. $\tan 165^{\circ}$

SOLUTION:

Write 165° as the sum or difference of angle measures with tangents that you know.

$$
\begin{aligned}
\tan 165 & =\tan (120+45) \\
& =\frac{\tan 120+\tan 45}{1-\tan 120 \tan 45} \\
& =\frac{-\sqrt{3}+1}{1-(-\sqrt{3})(1)} \\
& =\frac{1-\sqrt{3}}{1+\sqrt{3}} \\
& =\frac{1-\sqrt{3}}{1+\sqrt{3}} \cdot \frac{1-\sqrt{3}}{1-\sqrt{3}} \\
& =\frac{4-2 \sqrt{3}}{-2} \\
& =-2+\sqrt{3}
\end{aligned}
$$

20. $\cos -\frac{\pi}{12}$

SOLUTION:

Write $-\frac{\pi}{12}$ as the sum or difference of angle measures with cosines that you know.

$$
\begin{aligned}
\cos -\frac{\pi}{12} & =\cos \left(\frac{\pi}{6}-\frac{\pi}{4}\right) \\
& =\cos \frac{\pi}{6} \cos \frac{\pi}{4}+\sin \frac{\pi}{6} \sin \frac{\pi}{4} \\
& =\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}+\frac{1}{2} \cdot \frac{\sqrt{2}}{2} \\
& =\frac{\sqrt{6}}{4}+\frac{\sqrt{2}}{4} \\
& =\frac{\sqrt{6}+\sqrt{2}}{4}
\end{aligned}
$$

21. $\sin 75^{\circ}$

SOLUTION:

Write 75° as the sum or difference of angle measures with sines that you know.

$$
\begin{aligned}
\sin 75^{\circ} & =\sin \left(45^{\circ}+30^{\circ}\right) \\
& =\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ} \\
& =\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{1}{2} \\
& =\frac{\sqrt{6}}{4}+\frac{\sqrt{2}}{4} \\
& =\frac{\sqrt{6}+\sqrt{2}}{4}
\end{aligned}
$$

22. $\cos 465^{\circ}-\cos 15^{\circ}$

SOLUTION:

$$
\begin{aligned}
\cos 465-\cos 15 & =-2 \sin \left(\frac{465+15}{2}\right) \sin \left(\frac{465-15}{2}\right) \\
& =-2 \sin 240 \sin 225 \\
& =-2\left(-\frac{\sqrt{3}}{2}\right)\left(-\frac{\sqrt{2}}{2}\right) \\
& =-\frac{\sqrt{6}}{2}
\end{aligned}
$$

23. $6 \sin 675^{\circ}-6 \sin 45^{\circ}$

SOLUTION:

$$
\begin{aligned}
6 \sin 675-6 \sin 45 & =6(\sin 675-\sin 45) \\
& =6\left[2 \cos \left(\frac{675+45}{2}\right) \sin \left(\frac{675-45}{2}\right)\right] \\
& =6(2 \cos 360 \sin 315) \\
& =6\left[2(1)\left(-\frac{\sqrt{2}}{2}\right)\right] \\
& =-6 \sqrt{2}
\end{aligned}
$$

Practice Test - Chapter 5

24. MULTIPLE CHOICE Which identity is true?
$\mathbf{F} \cos (\theta+\pi)=-\sin \pi$
$\mathbf{G} \cos (\pi-\theta)=\cos \theta$
$\mathbf{H} \sin \left(\theta-\frac{3 \pi}{2}\right)=\cos \theta$
$\mathbf{J} \sin (\pi+\theta)=\sin \theta$
SOLUTION:
Use the sum or difference identities to verify each identity.
Choice F:

$$
\begin{aligned}
\cos (\theta+\pi) & =\cos \theta \cos \pi-\sin \theta \sin \pi \\
& =\cos \theta(-1)-\sin \theta(0) \\
& =-\cos \theta
\end{aligned}
$$

Choice F is false.
Choice G:

$$
\begin{aligned}
\cos (\pi-\theta) & =\cos \pi \cos \theta+\sin \pi \sin \theta \\
& =(-1) \cos \theta+(0) \sin \theta \\
& =-\cos \theta
\end{aligned}
$$

Choice G is false.
Choice H:

$$
\begin{aligned}
\sin \left(\theta-\frac{3 \pi}{2}\right) & =\sin \theta \cos \frac{3 \pi}{2}-\cos \theta \sin \frac{3 \pi}{2} \\
& =\sin \theta(0)-\cos \theta(-1) \\
& =\cos \theta
\end{aligned}
$$

Choice H is true.
Choice J:

$$
\begin{aligned}
\sin (\pi+\theta) & =\sin \pi \cos \theta+\cos \pi \sin \theta \\
& =(0) \cos \theta+(-1) \sin \theta \\
& =-\sin \theta
\end{aligned}
$$

Choice J is false.
The correct answer is H .
Simplify each expression.
25. $\cos \frac{\pi}{8} \cos \frac{3 \pi}{8}-\sin \frac{\pi}{8} \sin \frac{3 \pi}{8}$

SOLUTION:

$$
\begin{aligned}
\cos \frac{\pi}{8} \cos \frac{3 \pi}{8}-\sin \frac{\pi}{8} \sin \frac{3 \pi}{8} & =\cos \left(\frac{\pi}{8}+\frac{3 \pi}{8}\right) \\
& =\cos \frac{\pi}{2} \\
& =0
\end{aligned}
$$

$\tan 135^{\circ}-\tan 15^{\circ}$
26. $1+\tan 135^{\circ} \tan 15^{\circ}$

SOLUTION:

$$
\begin{aligned}
\frac{\tan 135-\tan 15}{1+\tan 135 \tan 15} & =\tan (135-15) \\
& =\tan 120 \\
& =-\sqrt{3}
\end{aligned}
$$

27. PHYSICS A soccer ball is kicked from ground level with an initial speed of v at an angle of elevation θ.

a. The horizontal distance d the ball will travel can be determined using $d=\frac{v^{2} \sin 2 \theta}{g}$, where g is the acceleration due to gravity.
Verify that this expression is the same as $\frac{2}{g} v^{2}(\tan$ $\theta-\tan \theta \sin ^{2} \theta$).
b. The maximum height h the object will reach can be determined using $h=\frac{v^{2} \sin ^{2} \theta}{2 g}$. Find the ratio of the maximum height attained to the horizontal distance traveled.

SOLUTION:

a.
$\frac{2}{g} v^{2}\left(\tan \theta-\tan \theta \sin ^{2} \theta\right)$
$=\frac{2}{g} v^{2} \tan \theta\left(1-\sin ^{2} \theta\right) \quad$ Factor $\tan \theta$ from each term.
$=\frac{2}{g} v^{2} \tan \theta \cos ^{2} \theta \quad$ Pythagorean Identity
$=\frac{2}{g} v^{2} \frac{\sin \theta}{\cos \theta} \cos ^{2} \theta \quad$ Quotient Identity
$=\frac{2}{g} v^{2} \sin \theta \cos \theta \quad$ Simplify.
$=\frac{v^{2} \sin 2 \theta}{g} \quad$ Double-Angle Identity
b. To find the ratio of the maximum height attained to the horizontal distance traveled, find $\frac{h}{d}$.

Practice Test - Chapter 5

$$
\begin{aligned}
\frac{h}{d} & =\frac{\frac{v^{2} \sin ^{2} \theta}{2 g}}{\frac{v^{2} \sin 2 \theta}{g}} \\
& =\frac{v^{2} \sin ^{2} \theta}{2 g} \cdot \frac{g}{v^{2} \sin 2 \theta} \\
& =\frac{\sin ^{2} \theta}{2 \sin 2 \theta} \\
& =\frac{\sin ^{2} \theta}{2(2 \sin \theta \cos \theta)} \\
& =\frac{\sin \theta}{4 \cos \theta} \\
& =\frac{1}{4} \tan \theta
\end{aligned}
$$

Find the values of $\sin 2 \theta, \cos 2 \theta$, and $\tan 2 \theta$ for the given value and interval.
28. $\tan \theta=-3,\left(\frac{3 \pi}{2}, 2 \pi\right)$

SOLUTION:

If $\tan \theta=-3$, then $\tan \theta=-\frac{3}{1}$. Since $\tan \theta=-\frac{3}{1}$ on the interval $\left(\frac{3 \pi}{2}, 2 \pi\right)$, one point on the terminal side of θ has x-coordinate 1 and y-coordinate -3 as shown. The distance from the point to the origin is $\sqrt{(-3)^{2}+1^{2}}$ or $\sqrt{10}$.

Using this point, we find that
$\sin \theta=\frac{y}{r}$ or $-\frac{3 \sqrt{10}}{10}$ and $\cos \theta=\frac{x}{r}$ or $\frac{\sqrt{10}}{10}$. Now use the double-angle identities for sine, cosine, and tangent to find $\sin 2 \theta \cos 2 \theta$, and $\tan 2 \theta$.

$$
\begin{aligned}
\sin 2 \theta & =2 \sin \theta \cos \theta \\
& =2\left(-\frac{3 \sqrt{10}}{10}\right)\left(\frac{\sqrt{10}}{10}\right) \\
& =-\frac{3}{5} \\
\cos 2 \theta & =2 \cos ^{2} \theta-1 \\
& =2\left(\frac{\sqrt{10}}{10}\right)^{2}-1 \\
& =2\left(\frac{1}{10}\right)-1 \\
& =\frac{2}{10}-\frac{10}{10} \\
& =-\frac{4}{5} \\
\tan 2 \theta & =\frac{2 \tan \theta}{1-\tan ^{2} \theta} \\
& =\frac{2(-3)}{1-(-3)^{2}} \\
& =\frac{-6}{1-9} \\
& =\frac{3}{4}
\end{aligned}
$$

29. $\cos \theta=\frac{1}{5},\left(0^{\circ}, 90^{\circ}\right)$

SOLUTION:
Since $\cos \theta=\frac{1}{5}$ on the interval $\left(0^{\circ}, 90^{\circ}\right)$, one point on the terminal side of θ has x-coordinate 1 and a distance of 5 units from the origin as shown. The y coordinate of this point is therefore $\sqrt{5^{2}-1^{2}}$ or $2 \sqrt{6}$.

Practice Test - Chapter 5

Using this point, we find that $\sin \theta=\frac{y}{r}$ or $\frac{2 \sqrt{6}}{5}$ and $\tan \theta=\frac{y}{x}$ or $2 \sqrt{6}$. Now use the double-angle identities for sine, cosine, and tangent to find $\sin 2 \theta$, $\cos 2 \theta$, and $\tan 2 \theta$. $\sin 2 \theta=2 \sin \theta \cos \theta$

$$
\begin{aligned}
& =2\left(\frac{2 \sqrt{6}}{5}\right)\left(\frac{1}{5}\right) \\
& =\frac{4 \sqrt{6}}{25} \\
\cos 2 \theta & =2 \cos ^{2} \theta-1 \\
& =2\left(\frac{1}{5}\right)^{2}-1 \\
& =2\left(\frac{1}{25}\right)-1 \\
& =\frac{2}{25}-\frac{25}{25} \\
& =-\frac{23}{25} \\
\tan 2 \theta & =\frac{2 \tan \theta}{1-\tan ^{2} \theta} \\
& =\frac{2(2 \sqrt{6})}{1-(2 \sqrt{6})^{2}} \\
& =\frac{4 \sqrt{6}}{1-24} \\
& =-\frac{4 \sqrt{6}}{23}
\end{aligned}
$$

30. $\cos \theta=\frac{5}{9},\left(0, \frac{\pi}{2}\right)$

SOLUTION:

Since $\cos \theta=\frac{5}{9}$ on the interval $\left(0, \frac{\pi}{2}\right)$, one point on the terminal side of θ has x-coordinate 5 and a distance of 9 units from the origin as shown. The y coordinate of this point is therefore $\sqrt{9^{2}-5^{2}}$ or $2 \sqrt{14}$.

Using this point, we find that $\sin \theta=\frac{y}{r}$ or $\frac{2 \sqrt{14}}{9}$ and $\tan \theta=\frac{y}{x}$ or $\frac{2 \sqrt{14}}{5}$. Now use the double-angle identities for sine, cosine, and tangent to find $\sin 2 \theta$, $\cos 2 \theta$, and $\tan 2 \theta$.
$\sin 2 \theta=2 \sin \theta \cos \theta$

$$
\begin{aligned}
& =2\left(\frac{2 \sqrt{14}}{9}\right)\left(\frac{5}{9}\right) \\
& =\frac{20 \sqrt{14}}{81} \\
\cos 2 \theta & =2 \cos ^{2} \theta-1 \\
& =2\left(\frac{5}{9}\right)^{2}-1 \\
& =2\left(\frac{25}{81}\right)-1 \\
& =\frac{50}{81}-\frac{81}{81} \\
& =-\frac{31}{81}
\end{aligned}
$$

Practice Test - Chapter 5

$$
\begin{aligned}
\tan 2 \theta & =\frac{2 \tan \theta}{1-\tan ^{2} \theta} \\
& =\frac{2\left(\frac{2 \sqrt{14}}{5}\right)}{1-\left(\frac{2 \sqrt{14}}{5}\right)^{2}} \\
& =\frac{\frac{4 \sqrt{14}}{5}}{1-\frac{56}{25}} \\
& =\frac{\frac{4 \sqrt{14}}{5}}{-\frac{31}{25}} \\
& =-\frac{20 \sqrt{14}}{31}
\end{aligned}
$$

